Lecture 18 (Group and its properties)

Definition 1 Let G be a set. A function * : G x G — G is called a binary operation.

Examples: Let C, R, Q, Z, N denote the set of complex numbers, the set of real numbers,
the set of rational numbers, the set of integers, the set of natural numbers respectively. Let

M5 (G) denote the set of m x n matrices whose entries are from the set G.

1. The operation + in C, R, Q, Z, N is binary. The operation — is a binary operation on
R, C, Q, and Z but not in N.

2. The usual matrix addition is a binary operation in M,,x,(G), where G € {C,R,Q, Z, N}.

Definition 2 A group is a pair (G, %), where G is a set and * is a binary operation on G,

such that the following axioms hold:
1. (Associative law) (a *b) x ¢ = a* (bx*¢) for all a,b,c € G.

2. (Existence of an identity) There exists an element e € G with the property that

exa=aand axe=a for all a € G.

3. (Existence of an inverse) For each a € G there exists an element b € G such that

axb=bxa=ce.

Definition 3 A group (G, %) is called an abelian or commutative group if @ x b = b * a for

all a,b € G.

Proposition 1 e (Uniqueness of the Identity:) The identity e is the unique element
in G : To see this suppose we have another identity f. Using the fact that both of these

are identities we see that

f=fxe=e.
We will usually denote this element by 1 (or by 0 if the group operation is commutative).

e (Uniqueness of Inverses:) The inverse b € G of a € G is unique. To see this suppose

that ¢ is another inverse to a. Then

c=cxe=cx(axb)=(cxa)xb=exb=0b.



We call this unique element b, the inverse of a. It is often denoted a=! (or —a when

the group operation is commutative). For simplicity, we write ab for a x b.

(Cancellation:) In a group G, the right and left cancellation laws hold; that is,
ba = ca implies b = ¢, and ab = ac implies b = c.

Proof: Suppose ba = ca. Let a=! be an inverse of a. Then, multiplying on the right
by a! yields (ba)a™! = (ca)a™!. Associativity yields b(aa™') = c(aa™!). Then, be = ce
and, therefore, b = ¢ as desired. Similarly, one can prove that ab = ac implies b = ¢ by

multiplying by a~! on the left.

(Socks-Shoes Property:) For group elements a and b, (ab)™! = b~1a™!.
Proof: Since (ab)(ab)™ = e and (ab)(b~'a™) = a(bb~Ha™t = aea™ = aa™t = e, we

have by uniqueness of inverses that (ab)™! = b~ta™'.

Examples:

1.

The group of integers (Z,+) and Q, R, C with respect to addition are abelian groups.

The set R* of nonzero real numbers is a group under ordinary multiplication. The

identity is 1. The inverse of a is 1/a.

The set Z, = {0,1,...,n — 1} for n > 1 is a group under addition modulo n. For
any j € Zy, the inverse of j is n — j. This group is usually referred to as the group of

integers modulo n.

The set {1,2,...,n — 1} is a group under multiplication modulo n if and only if n is

prime.

The subset {1,—1,i,—i} of the complex numbers is a group under complex multi-
plication. Note that —1 is its own inverse, whereas the inverse of ¢ is —i, and vice

versa.

Let X be a set and let Sym(X) be the set of all bijective maps from X to itself. Then
Sym(X) is a group with respect to composition, o, of maps. This group is called the
symmetric group on X and we often refer to the elements of Sym(X) as permutations
of X. When X = {1,2,3,...,n} the group is often denoted S,, and called the symmetric

group on n letters.



7. The set of all n x n matrices with determinant 1 with entries from Q, R, C, or Z,, (p
a prime) is a non-Abelian group under matrix multiplication. This group is called the

special linear group of n x n matrices over Q, R, C, or Z,, respectively.

8. The set of all 2 x 2 matrices with real number entries is not a group under the matrix

multiplication operation. Inverses do not exist when the determinant is 0.

9. The set {0,1,2,3} is not a group under multiplication modulo 4. Although 1 and 3

have inverses, the elements 0 and 2 do not.

10. The set of integers under subtraction is not a group, since the operation is not asso-

clative.

Definition 4 Let G be a group. A subset H of G is called a subgroup of G if the following

conditions hold:
1. ee H,
2. If a,b € H then ab,a™! € H.
Note: One can replace the above conditions with the more economical:
1. H#0,
2. If a,b € H then a™'b € H.

Definition 5 The number of elements of a group (finite or infinite) is called the order of

the group. We will use |G| to denote the order of a group G.

Example: The group Z of integers under addition has infinite order, whereas the group

U(10) = {1,3,7,9} under multiplication modulo 10 has order 4.

Definition 6 The order of an element g in a group G is the smallest positive integer n such
that ¢" = e. In additive notation, this would be ng = 0. If no such integer exists, we say

that ¢ has infinite order. The order of an element g is denoted by |g|.
Example:

e Consider Zo under addition modulo 10. Since 2+2=4,24+24+2=6,2+2+2+2 =
8,2+2+2+2+2 = 0, we know that |2| = 5. Similar computations show that
0] = 1,|7] = 10,]5| = 2,|6| = 5.



Definition 7 A group G is called cyclic if there is an element a in G such that G = {a" :

n € Z}. Such an element a is called a generator of G.

Definition 8 Let G be a group and let H be a subset of G. For any a € G, the set {ah :
h € H} is denoted by aH. Analogously, Ha = {ha : h € H} and aHa™! = {aha™ : h € H}.
When H is a subgroup of G, the set aH is called the left coset of H in G containing a,
whereas Ha is called the right coset of H in G containing a. In this case, the element a is
called the coset representative of aH (or Ha). We use |aH| to denote the number of elements

in the set aH, and |Ha| to denote the number of elements in Ha.
Properties of Cosets: Let H be a subgroup of GG, and let a and b belong to G. Then,

1. a€aH,

Proof: a = ae, where e is the identity element of H.
2. aH = H if and only if a € H,
3. aH = bH if and only if a € bH
4. aH = bH or aH NbH =,
5. aH = bH if and only if a='b € H,
6. |aH| = |bH],
7. aH = Ha if and only if H = aHa™*,
8. aH is a subgroup of G if and only if a € H.

Suppose G is a group with a subgroup H. We define a relation R on G as follows:

rRy iff z71y € H.

This relation is an equivalence relation. Notice that 2Ry if and only if 7'y € H if and only

if y € xH. Hence the equivalence class of x is [z] = 2 H, the left coset of H in G.

Theorem 1 (Lagrange’s Theorem:) Let G be a finite group with a subgroup H. Then
|H| divides |G].

Proof: Using the equivalence relation above, GG gets partitioned into pairwise disjoint equiv-



alence classes, say

G=aHUaHU---Ua,H
and adding up we get
|G| = larH| + |axH[ + - - + |a, H| = r[H].
Notice that the map from G to itself that takes g to a;g is a bijection (the inverse is the map

g — a;'g) and thus |a;H| = |H|.

Corollary: If GG is a group of finite order m, then the order of any a € G divides the order

of G and in particular a™ = e.

Definition: (Normal Subgroup) A subgroup H of G is said to be a normal subgroup if

g 'Hg C HVYg €@G.

Definition: Let G be a group with a subgroup H. The number of left cosets of H in G is
called the index of H in G and is denoted by [G : H].
Note:

e Every subgroup N of an abelian group G is normal.
e The trivial subgroup {e} and G itself are always normal subgroups of G.
e If H is a subgroup of G such that [G : H|] = 2 then H is normal subgroup of G.

Definition: Let (G,*), (H,o) be groups. A map ® : G — H is a homomorphism if
®(a*xb) = P(a) o D(b)

for all a,b € GG. Furthermore ® is an isomorphism if it is bijective.
Example: Let RT be the set of all the postive real numbers. There is a (well-known)

isomorphism @ : (R, +) — (R*,.) given by ®(x) = €”.



