
Lecture 18 (Group and its properties)

Definition 1 Let G be a set. A function ∗ : G×G → G is called a binary operation.

Examples: Let C, R, Q, Z, N denote the set of complex numbers, the set of real numbers,

the set of rational numbers, the set of integers, the set of natural numbers respectively. Let

Mm×n(G) denote the set of m× n matrices whose entries are from the set G.

1. The operation + in C, R, Q, Z, N is binary. The operation − is a binary operation on

R, C, Q, and Z but not in N.

2. The usual matrix addition is a binary operation in Mm×n(G), where G ∈ {C,R,Q,Z,N}.

Definition 2 A group is a pair (G, ∗), where G is a set and ∗ is a binary operation on G,

such that the following axioms hold:

1. (Associative law) (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G.

2. (Existence of an identity) There exists an element e ∈ G with the property that

e ∗ a = a and a ∗ e = a for all a ∈ G.

3. (Existence of an inverse) For each a ∈ G there exists an element b ∈ G such that

a ∗ b = b ∗ a = e.

Definition 3 A group (G, ∗) is called an abelian or commutative group if a ∗ b = b ∗ a for

all a, b ∈ G.

Proposition 1 • (Uniqueness of the Identity:) The identity e is the unique element

in G : To see this suppose we have another identity f. Using the fact that both of these

are identities we see that

f = f ∗ e = e.

We will usually denote this element by 1 (or by 0 if the group operation is commutative).

• (Uniqueness of Inverses:) The inverse b ∈ G of a ∈ G is unique. To see this suppose

that c is another inverse to a. Then

c = c ∗ e = c ∗ (a ∗ b) = (c ∗ a) ∗ b = e ∗ b = b.
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We call this unique element b, the inverse of a. It is often denoted a−1 (or −a when

the group operation is commutative). For simplicity, we write ab for a ∗ b.

• (Cancellation:) In a group G, the right and left cancellation laws hold; that is,

ba = ca implies b = c, and ab = ac implies b = c.

Proof: Suppose ba = ca. Let a−1 be an inverse of a. Then, multiplying on the right

by a−1 yields (ba)a−1 = (ca)a−1. Associativity yields b(aa−1) = c(aa−1). Then, be = ce

and, therefore, b = c as desired. Similarly, one can prove that ab = ac implies b = c by

multiplying by a−1 on the left.

• (Socks-Shoes Property:) For group elements a and b, (ab)−1 = b−1a−1.

Proof: Since (ab)(ab)−1 = e and (ab)(b−1a−1) = a(bb−1)a−1 = aea−1 = aa−1 = e, we

have by uniqueness of inverses that (ab)−1 = b−1a−1.

Examples:

1. The group of integers (Z,+) and Q,R,C with respect to addition are abelian groups.

2. The set R∗ of nonzero real numbers is a group under ordinary multiplication. The

identity is 1. The inverse of a is 1/a.

3. The set Zn = {0, 1, . . . , n − 1} for n ≥ 1 is a group under addition modulo n. For

any j ∈ Zn, the inverse of j is n− j. This group is usually referred to as the group of

integers modulo n.

4. The set {1, 2, . . . , n − 1} is a group under multiplication modulo n if and only if n is

prime.

5. The subset {1,−1, i,−i} of the complex numbers is a group under complex multi-

plication. Note that −1 is its own inverse, whereas the inverse of i is −i, and vice

versa.

6. Let X be a set and let Sym(X) be the set of all bijective maps from X to itself. Then

Sym(X) is a group with respect to composition, ◦, of maps. This group is called the

symmetric group on X and we often refer to the elements of Sym(X) as permutations

of X. When X = {1, 2, 3, . . . , n} the group is often denoted Sn and called the symmetric

group on n letters.
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7. The set of all n × n matrices with determinant 1 with entries from Q, R, C, or Zp (p

a prime) is a non-Abelian group under matrix multiplication. This group is called the

special linear group of n× n matrices over Q,R,C, or Zp, respectively.

8. The set of all 2× 2 matrices with real number entries is not a group under the matrix

multiplication operation. Inverses do not exist when the determinant is 0.

9. The set {0, 1, 2, 3} is not a group under multiplication modulo 4. Although 1 and 3

have inverses, the elements 0 and 2 do not.

10. The set of integers under subtraction is not a group, since the operation is not asso-

ciative.

Definition 4 Let G be a group. A subset H of G is called a subgroup of G if the following

conditions hold:

1. e ∈ H,

2. If a, b ∈ H then ab, a−1 ∈ H.

Note: One can replace the above conditions with the more economical:

1. H ̸= ∅,

2. If a, b ∈ H then a−1b ∈ H.

Definition 5 The number of elements of a group (finite or infinite) is called the order of

the group. We will use |G| to denote the order of a group G.

Example: The group Z of integers under addition has infinite order, whereas the group

U(10) = {1, 3, 7, 9} under multiplication modulo 10 has order 4.

Definition 6 The order of an element g in a group G is the smallest positive integer n such

that gn = e. In additive notation, this would be ng = 0. If no such integer exists, we say

that g has infinite order. The order of an element g is denoted by |g|.

Example:

• Consider Z10 under addition modulo 10. Since 2+ 2 = 4, 2+ 2+ 2 = 6, 2+ 2+ 2+ 2 =

8, 2 + 2 + 2 + 2 + 2 = 0, we know that |2| = 5. Similar computations show that

|0| = 1, |7| = 10, |5| = 2, |6| = 5.
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Definition 7 A group G is called cyclic if there is an element a in G such that G = {an :

n ∈ Z}. Such an element a is called a generator of G.

Definition 8 Let G be a group and let H be a subset of G. For any a ∈ G, the set {ah :

h ∈ H} is denoted by aH. Analogously, Ha = {ha : h ∈ H} and aHa−1 = {aha−1 : h ∈ H}.

When H is a subgroup of G, the set aH is called the left coset of H in G containing a,

whereas Ha is called the right coset of H in G containing a. In this case, the element a is

called the coset representative of aH (or Ha). We use |aH| to denote the number of elements

in the set aH, and |Ha| to denote the number of elements in Ha.

Properties of Cosets: Let H be a subgroup of G, and let a and b belong to G. Then,

1. a ∈ aH,

Proof: a = ae, where e is the identity element of H.

2. aH = H if and only if a ∈ H,

3. aH = bH if and only if a ∈ bH

4. aH = bH or aH ∩ bH = ∅,

5. aH = bH if and only if a−1b ∈ H,

6. |aH| = |bH|,

7. aH = Ha if and only if H = aHa−1,

8. aH is a subgroup of G if and only if a ∈ H.

Suppose G is a group with a subgroup H. We define a relation R on G as follows:

xRy iff x−1y ∈ H.

This relation is an equivalence relation. Notice that xRy if and only if x−1y ∈ H if and only

if y ∈ xH. Hence the equivalence class of x is [x] = xH, the left coset of H in G.

Theorem 1 (Lagrange’s Theorem:) Let G be a finite group with a subgroup H. Then

|H| divides |G|.

Proof: Using the equivalence relation above, G gets partitioned into pairwise disjoint equiv-

4



alence classes, say

G = a1H ∪ a2H ∪ · · · ∪ arH

and adding up we get

|G| = |a1H|+ |a2H|+ · · ·+ |arH| = r|H|.

Notice that the map from G to itself that takes g to aig is a bijection (the inverse is the map

g → a−1
i g) and thus |aiH| = |H|.

Corollary: If G is a group of finite order m, then the order of any a ∈ G divides the order

of G and in particular am = e.

Definition: (Normal Subgroup) A subgroup H of G is said to be a normal subgroup if

g−1Hg ⊆ H ∀g ∈ G.

Definition: Let G be a group with a subgroup H. The number of left cosets of H in G is

called the index of H in G and is denoted by [G : H].

Note:

• Every subgroup N of an abelian group G is normal.

• The trivial subgroup {e} and G itself are always normal subgroups of G.

• If H is a subgroup of G such that [G : H] = 2 then H is normal subgroup of G.

Definition: Let (G, ∗), (H, ◦) be groups. A map Φ : G → H is a homomorphism if

Φ(a ∗ b) = Φ(a) ◦ Φ(b)

for all a, b ∈ G. Furthermore Φ is an isomorphism if it is bijective.

Example: Let R+ be the set of all the postive real numbers. There is a (well-known)

isomorphism Φ : (R,+) → (R+, .) given by Φ(x) = ex.
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